skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sharma, Ashish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available April 15, 2026
  3. Abstract The vertical dimensions of urban morphology, specifically the heights of trees and buildings, exert significant influence on wind flow fields in urban street canyons and the thermal environment of the urban fabric, subsequently affecting the microclimate, noise levels, and air quality. Despite their importance, these critical attributes are less commonly available and rarely utilized in urban climate models compared to planar land use and land cover data. In this study, we explicitly mapped theheight oftreesandbuildings (HiTAB) across the city of Chicago at 1 m spatial resolution using a data fusion approach. This approach integrates high-precision light detection and ranging (LiDAR) cloud point data, building footprint inventory, and multi-band satellite images. Specifically, the digital terrain and surface models were first created from the LiDAR dataset to calculate the height of surface objects, while the rest of the datasets were used to delineate trees and buildings. We validated the derived height information against the existing building database in downtown Chicago and the Meter-scale Urban Land Cover map from the Environmental Protection Agency, respectively. The co-investigation on trees and building heights offers a valuable initiative in the effort to inform urban land surface parameterizations using real-world data. Given their high spatial resolution, the height maps can be adopted in physical-based and data-driven urban models to achieve higher resolution and accuracy while lowering uncertainties. Moreover, our method can be extended to other urban regions, benefiting from the growing availability of high-resolution urban informatics globally. Collectively, these datasets can substantially contribute to future studies on hyper-local weather dynamics, urban heterogeneity, morphology, and planning, providing a more comprehensive understanding of urban environments. 
    more » « less
  4. Abstract The effects of heat exposure on negative affect are thought to be central to the observed relationships between hot summer days and deleterious outcomes, such as violent crime or mental health crises. As these relationships are likely to be magnified by the effects of climate change, a better understanding of how consistent or variable the effects of hot weather on affective states is required. The current work combines data gathered from an ecological momentary assessment (EMA) study on individuals’ thermal perceptions, comfort, and affective states in outdoor environments during their daily lives with high spatiotemporal resolution climate-modeled weather variables. Using these data, associations between objective weather variables (temperature, humidity, etc.), perceived heat (thermal perception and comfort), and affective states are examined. Overall, objective weather data reasonably predicted perception and comfort, but only comfort predicted negative affective states. The variance explained across individuals was generally very low in predicting negative affect or comfort, but within-person variance explained was high. In other words, while there may be a relatively consistent relationship between temperature and psychological experience for any given person, there are significant individual differences across people. Age and gender were examined as moderators of these relationships, and while gender had no impact, participant age showed several significant interactions. Specifically, while older adults tended to experience more thermal discomfort and perceived higher temperatures as hotter, the relationship between discomfort and negative affect was lower in older adults. Taken together, these results emphasize the importance of thermal discomfort specifically in predicting negative affect, as well as the high inter-individual variability in thermal perceptions and comfort for the same ambient temperatures. 
    more » « less
  5. Abstract The accurate modeling of urban microclimate is a challenging task given the high surface heterogeneity of urban land cover and the vertical structure of street morphology. Recent years have witnessed significant efforts in numerical modeling and data collection of the urban environment. Nonetheless, it is difficult for the physical‐based models to fully utilize the high‐resolution data under the constraints of computing resources. The advancement in machine learning (ML) techniques offers the computational strength to handle the massive volume of data. In this study, we proposed a modeling framework that uses ML approach to estimate point‐scale street‐level air temperature from the urban‐resolving meso‐scale climate model and a suite of hyper‐resolution urban geospatial data sets, including three‐dimensional urban morphology, parcel‐level land use inventory, and weather observations from a sensor network. We implemented this approach in the City of Chicago as a case study to demonstrate the capability of the framework. The proposed approach vastly improves the resolution of temperature predictions in cities, which will help the city with walkability, drivability, and heat‐related behavioral studies. Moreover, we tested the model's reliability on out‐of‐sample locations to investigate the modeling uncertainties and the application potentials to the other areas. This study aims to gain insights into next‐gen urban climate modeling and guide the observation efforts in cities to build the strength for the holistic understanding of urban microclimate dynamics. 
    more » « less
  6. Abstract BackgroundSepsis and trauma are known to disrupt gut bacterial microbiome communities, but the impacts and perturbations in the fungal (mycobiome) community after severe infection or injury, particularly in patients experiencing chronic critical illness (CCI), remain unstudied. MethodsWe assess persistence of the gut mycobiome perturbation (dysbiosis) in patients experiencing CCI following sepsis or trauma for up to two-to-three weeks after intensive care unit hospitalization. ResultsWe show that the dysbiotic mycobiome arrays shift toward a pathobiome state, which is more susceptible to infection, in CCI patients compared to age-matched healthy subjects. The fungal community in CCI patients is largely dominated byCandidaspp; while, the commensal fungal species are depleted. Additionally, these myco-pathobiome arrays correlate with alterations in micro-ecological niche involving specific gut bacteria and gut-blood metabolites. ConclusionsThe findings reveal the persistence of mycobiome dysbiosis in both sepsis and trauma settings, even up to two weeks post-sepsis and trauma, highlighting the need to assess and address the increased risk of fungal infections in CCI patients. Graphical Abstract 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  7. Mental health stigma prevents many individuals from receiving the appropriate care, and social psychology studies have shown that mental health tends to be overlooked in men. In this work, we investigate gendered mental health stigma in masked language models. In doing so, we operationalize mental health stigma by developing a framework grounded in psychology research: we use clinical psychology literature to curate prompts, then evaluate the models’ propensity to generate gendered words. We find that masked language models capture societal stigma about gender in mental health: models are consistently more likely to predict female subjects than male in sentences about having a mental health condition (32% vs. 19%), and this disparity is exacerbated for sentences that indicate treatment-seeking behavior. Furthermore, we find that different models capture dimensions of stigma differently for men and women, associating stereotypes like anger, blame, and pity more with women with mental health conditions than with men. In showing the complex nuances of models’ gendered mental health stigma, we demonstrate that context and overlapping dimensions of identity are important considerations when assessing computational models’ social biases. 
    more » « less